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SOLUTION OF THE PLANE MIXED PROBLEM OF THE THEORY OF ELASTICITY
IN THE FORM OF A SERIES IN LEGENDRE POLYNOMIALS

G. V. Ivanov UDC 539.3

By using Legendre polynomials, it is possible to demonstrate a second procedure, differ-
ent from those published in the literature [1, 2], for reducing the problem to the solution

of an algebraic system or to the solution of a boundary-value problem for ordinary differen-
tial equations.

1. Formulation of the Problem. The plane mixed boundary-value problem of the theory
of elasticity consists in finding the functions p, q, T, u, and v satisfying the equations

dpldx + ot/dy - v, =0, 0t/oz + dg/oy -, =10,
p — adu/dx — Pov/dy = 0, g — adv/dy — Pouidz = 0,
T — w(0u/dy + lox) =0, o = 2p (1 — V)/(1 — 2v), v<< 1.2, p>0.
p=aviit —w)
within some region Q and taking on specified values on the boundary of the region. We shall
confine ourselves to the case in which Q is a square, Q = {z,y]z=[—1,1],y&[—1,11}, and the

boundary conditions are such that by a transformation of the desired functions the problem
can be reduced to finding the functions p, q, T, u, and v satisfying the zero boundary condi-

tions -
(P y=t1 = (Qy=21 = (W)y=t1 = (t)y=2y =0 ‘ (1.1

and the equations

ap/oz + ot/dy + f; = 0, 9t/ox + dqioy + f. =0,
p — aduldx — Povidy +f3 =0, ¢ — adv/dy — pouldx - f, =0,
T —u(Qu/dy + ov/dx) + {5 =0,

where the fo (6 =1, ..., 5) are known functions which are quadratic summable over Q. We as-

sume that in each of the equations (1.1) one of the multiplied functions is equal to zeroall
along one side of the square.

If in the case of a displacement of the square as an absolutely rigid body

u=a-+ay, v=0— ox
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(¢, b, and w are constants) from the boundary condition (1.1) it does not follow that

a=b=0=0, (1.2)
then we shall supplement the conditions (1.1) with those of the equations
[uag =0, {va@ =0, [ (uy—ve)dQ =0, (1.3)

which, together with the conditicns (1.1), ensure that the equations (1.2) will be satisfied.

In those cases in which we use any of the equations (1.3), the functions f, and f, cannot be
arbitrary. We associate with the equations (1.3) the following equations:

n

{102 =0, {142 =0, [(fy — f2)dR =0.
Q Q

a

(1.4)

When we use any of the equations (1.3), the functions f, and f., must satisfy the correspond-
ing equations in (1.4).

2. Approximate Solution. We write

n m n m
ki _1
prm = S E mPth M= E sl kz PkQ'n
E=0i=0 —0 §=0
n—1 m-+1 i{—‘ V m
Al nm nm
"= X X P01 = 2 2 i PrQi,
E=01=0 B=0 i=0
n m—i n%i % .
nm
ug" = upi PpQi,v0" = 2 2 Uwi b0, (2.1)
=i B0 $==0
n m-1 n+i m
nm nm R
= 2 N ui'PyQi 1] 2 E T PLQs,
E=0 i=0 B=0 {=0
n+2 m--1 61 m-+2
n nm 7 .
up™ = 3 N uhiPpQi, v = = 2 i PrQs,
E=0 i=0 Fe0 i=0

nm nm
where n, m >1; pif*, gt ', Ukt Ukt

are constants; Pk

Pr(y), Qi = Qi (x) are Legendre poly-
nomials [3] orthogonal in the interval {— 1, 1]; and k

, 1 are the degrees of the polynomials.
We require the functions (2.1) to satisfy the zero boundary conditions
(prmuf™)emst = (gmmvT™)yet = (7™ ezt = (ré”"uﬁ_’"),,:ii =0 (2.2)

and the equations

gpmm  dTpm
(S( l:yx +%+J’1) PpQidQ =0, k=0,1,...,n, i=0,1,..,m—1;

- - fz)PhQidQ =0, k=0,1,...,n—1,i=0,1,....m

auy™ oy
pm—a—— —p5- 7 4 f5 ) PrQ:dQ = 0,

oy uj™
i —alh —BY 4 ) Py =0,

E=0,4,..,n, i =O,1, ey m

(2.3

qup™ @™
2 (u +l}0;z)Tf5}PhQidQ=0;k=0,1,2,...,n+1, 1==0,1,2,..,m—1;

K

nm aul™ o™ 1
‘S‘ T dy +_5—.z-_ +f5lPindQ:01k=031a21"'sn—11 i=011:23 m 1.
sl .
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We assume that in each of the equations (2.2) one of the factors [the same one as in (1.1)]
is zero over an entire side of the square.

If the formulation of the problem contains any of the equations (1.3), then the system
(2.2), (2.3) will be supplemented by the corresponding equations

ugs = 0,v55" =0, uif' — vl =0 (2.4)
and we will eliminate from (2.3) those of the equations

&

2

nm
o}

o™ * nm X
-i—|—f1>P1dQ=0, f=0’1r§§( dz ‘l‘aqa—y—“fz)dg‘-‘oa

which are the consequence of the remaining equations of the system (2.2), (2.3), and the equa-
tions (1.4).

The equations (2.2), (2.3), together with the corresponding equations (2.4), form a
closed system for the functions (2.1). The solution of this system will be called the approxi-

mate solution. The tangential stress in the approximate solution can be calculated by the
formula

n+1 m—4 n-—{ m-+1
nm nm
Tnm= ZTMPRQ:T 2.1 ZTMPhQL
k 0 i=0 k=0 i=m

The function DM gatisfies the equations (2.3) if instead of ©,™®, 1, we write t"™™. The
boundary conditions are approximately satisfied by t0m,

3. Energy Property of the Approximate Solution. We assume that the approximate solu-
tion exists. Making use of (2.2), (2.3), and the obvious equations of the type

Yf’!i IO = f——ui'“dp
4 dx

we can find

nm v auz}m gunm
”flu"”rfzv +f3 = ‘ffi +f5( + 2 )]dQ:Enm, (3.1)
Q

where

E =G (0™ vi™) - G, (u5™, v5™);
6o = | a2 ) + %2 % +2(3) ]on
Gz(¢,¢)=§p(%+%)zd9

4, Estimate of Displacements Caused by Deformation.  Let u be a function belonging to
L,(R) and having a generalized derivative 3u/dx belonging to L.(Q) [4]. We denote by ug,i,
ak,i the Fourier coefficients of the functions u, 3u/8x

du ~
U~ 2 ur,iPpQi, 5~ 2 aniPy0:.
h,i=0 k,i=0

Making use of the property of Legendre polynomials [3] that

L Qe — Q) =(1+29)Q,, s=1,2, .., (4.1)
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we find that

[25 P, (Quit— Quei)d@ = (1 +29) [P, 0,00,
i Q

and, consequently,

= [/@2s — D1,y — [1/(2s - 3)a,, 1y,

r=0,1,2,...,s=1,2, ...
Obviously,

and therefore

w— NPy | <[5 (4.2)
E=0 z
In (4.2) and below, the symbol || || denotes the norm in L,(Q). Making use of (4.2) and
the positive~definiteness of the integrand in the functional G,, we find
. 2
ui™ “m o' Py ||+ [lpi™ — vz‘:"oz < C6 (uf™, vf™). (4.3)
In (4.3) and below, the letter C denotes a constant independent of n and m.
According to (4.1),
Junm Avlm
g‘i‘ (’5;— -+ _ai‘_)(PH-l - Prvi)(08+1 - Qs—i)dQ =
= 'g.(l + 27‘) u;mpr (Qs+i - Qs~1) -+ (1 -+ 23) Ungs(PT“H _"Pf—i)] dQ’ (4"4)
o
s,r=1,2,
We write
0ugm avgnz n—{—‘i m+1 o
3y -+ Er :k:'o 1:20 b1 PyQ;
In (4.4) we set s = 1, obtaining
nm 1 nm 1 nm 1 nm
Urg = 5 br1,0 5T byl 0 — T Ut +
5@r 13) 1,2 B Ur2 .2’__'1 r—11 oI FUrtit =1, 4, ..,
and, consequently,
nm m 1 nm n = nm\2 m\E 2
(uff %"Ugi)zﬁéf;[(um + o)’ 4 25 (b578)” + (65%)* — (Bhm) + (bg )ﬂ
n+-1 n n -
\! n 2 nm 1 1 nm 1 1 2
%2‘2r+1(u75n) \24 F [(b (b ] [—5-Z2r+1(ur2 )2+T ﬁ2r+i U%’" } (4.5)
r= r=2 r=1
From (4.3) and (4.5) we find
. n 2
(Wil" -+ 07 < CE oy | 2 uli'Py | < CE e (4.6)
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In- an analogous manner, we obtain the estimate

,
<CE,,. 4.7)

m
2 Ugiin
i=2

From (4.3), (4.6), and (4.7) it follows that

1 2 1 2
u111m —k% u;;zanpk ] + v111m - ZO Ug:nol l gCEmm
= =
m (4.8)
(uif + o7 < CEm.
Obviously,
nm |2 nm 12 m—1 2 m—1 2
bl = b o | S it 43 wineo]
= =0
. (4.9)
c?u‘g"‘ 61);"" 2 m-—-1 wm 2 m:i nm 2
S =l 2wl e A1) POsl 4[| X untei(2n - 3) PariQs) -
dy 0 =0 =0 '
From (4.8) and (4.9) it follows that
L 2
up" — X Ul Py|| <CEom (4.10)
In an analogous manner, we obtain the estimate
nm ! 2
0" — B OOl < CEums (4.11)

The inequalities (4.8), (4.10), and (4.11) give us an estimate in the approximate solu-
tion for the deformation~caused displacements in terms of the energy of elastic deformation.

From the proof of the inequalities (4.8) we can see that for any functions u, v & L,(Q),
which have generalized derivatives 3u/dx, v/0ye L,(Q) and a generalized sum of derivatives
(0uldy + v/dz) = Ly(RQ). the following inequalities hold:

2
< CE(u, v), (4.12)

2 1

1
u— uhop_kl +ilv— 2 vy
k=0 i=0 -

(u10 -+ Vo1)? < CE (u, v),

where
ting = (1 28) § uPydQ; vgs = o (1 -+ 20) | vQud;
0 Q
E(U‘, U) = Gl(u‘1 U) + GZ(Uv U)-
By the generalized sum of the derivatives 3u/3y + 3v/dx of the functions u, v we mean a func-
tion Y=L,(RQ), for which the inequality

f(mﬁp—i—u?—ﬁ-—}—v%)d@ =0
a

is satisfied, where ¢ is any function belonging to W,'(Q) which is equal to zero along the
sides of the square [4].

5. Estimate for "Rigid" Displacement. Let t,, us, and v, be functions which belong to
W2'(Q) and satisfy the conditions

(Palada=t1 = (QaVs)y=i1 = (Tulg)xeis = (Tely)y=i1 = 0; (5.1
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let py and qi be functions which belong to L,(R), have generalized derivatives Bp*/ 3 X,
0q,/0y=Ly(?), and satisfy the conditions (5.1). We assume that in each of the equations
(5.1) one of the factors [the same one as in (1.1)] vanishes along the entire side of the
square.

From (2.2) and (5.1) it follows that

nm

ey nm duy™ 0 nm vy
\;(%111‘ L Py 61 \dQ——O, Y( I + s a )aQ“O

Qo Q (5.2)

\1 8 rm  OTk g uy™ i e dQ =0.
ARt +dx e A T

2

Distinguishing in (5.2) the terms corresponding to the displacement of the square as an abso-
lutely rigid body, we can write (5.2) in the form

1

1
Wit U (paiSiady + 09 | (p)SSlaydy = Fy,
) —1
i 1

ﬂ?}@fidﬂw@ﬂ@ﬁiﬂﬂ:ﬂ,
—1 —1
1 (5.3)

(tay)y=lide + viy | (n)iZlidy +
—1

wit V()= lidz - 0m
~-1

1
J
)
o V01 ‘S (e2)i=lidy = Fy

In (5.3) the F; (i = 1, 2, 3) depend on px, qx, Tx, the derivatives of these functionms, and
the displacements caused by the deformation. Therefore, the F; can be estimated in terms of
the energy of elastic deformation, the norms of the functions px, qx, T, and the norms of
their derivatives.

Selecting the functions pg, q4, T4 in an appropriate manner and making use of the second
inequality in (4.8) and those of the equations (2.4) that we use for completing the system
(2.2), (2.3), we can prove that the following inequality holds:

max ”ugf)n L Iu?‘r)n !1 ivgﬁnl, !v’&{"l CEUQ' ' (5.4)
In an analogous manner, making use of the inequalities (4.12), we find that

wax {[Ugoly |thaol, [Uoo]s |v0a]} << CE(u, v) (5.5)

for any functions u, ve Ly(Q), which have generalized derivatives du/dz, dvldy = Ly(9), and a
generalized sum of derivatives (3u/dy + 3v/3x) & Ly(Q), and which satisfy the equations

_f(ap* ut py ) dQ =0, j(ﬁq* vt a5} 42 =0,

“ 0Ty 0Ty du
g}[ua—l—va—z*‘i—‘[*(@ T 51)]dp =0

(5.6)

and the equations in (1.3) that are used to supplement the conditioms (1.1). In (5.5), uggs
Vko (k = 0, 1) have the same meaning as in (4.12).

6. Existence of an Approximate Solution. From (3.1), (4.8), (4.10), (4. 11), (5.4), and
(2.3) we find that the zero solution of the homogeneous system of equations of the approxi-
mate solution is unique and that, consequently, the determinant of this system is nonzero.

7. Generalized Solution. From (3.1), (4.8), (4.10), (4.11), (5.4), and (2 3) it fol~
lows that the norms in L,(Q) of the functions (2.1), of the derivatives

nm nm
duy avy

ox dy

(7.1)
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and of the sums of the derivatives

oug™ avg™  op™ g™ aty™ g™ (7.2)
Ay oz ’ dzx dy ? oz + Ay

are bounded uniformly with respect to n, m. Therefore, from any sequence of solutions (2.1)

we can extract a sequence of solutions with numbers r, s that satisfies the following condi-
tions:

1) the sequence converges as r, s + = weakly in L,(Q) [4],
rs 3
Up, Uy, Uz —u; 11, T4 — 1
rs 78 T8
o, v, vz —>v; pU—p; ¢ g,

2) the sequence of derivatives (7.1) converges weakly in L,(2) to the generalized de-
rivatives [4]

oul’ o 601 o,
oz dz * ay

3) the sequence of sums of. derivatives (7

.2) converges to the generalized sums of de-
rivatives

ol ovl’ _,ou + v | op” oty ) )
dy ax ay 9z’ az dy  or + ay’
ot ag
5 Ty T Tay

From (2.3), by a passage to the limit as r, s + =, we find

é{(gﬁﬂyﬂl)mldg_o, gg( L L)o@ =0,

(p—aa—u —ﬁgv +f3) 0,dQ - 0,

]

Q

S(q_“%—ﬁz—i +f4}co4d9-;0, (7.3)
Q

=

where w, (k =1, ..., 5) are the derivatives of functions belonging to La(Q).
From (2.2), (2.3), and (5.1) it follows that

p (5 + 57) + o] @sd@ =0,

rs Ou rs Ou r,s—1 =
[l 5z o — 1 =0,

r

Q
(o34l -
Q
% ) i (1 + 2k)(1 + 2i) Q fquQidQ>PhQi.

k=0 {==0

fo*=

In (5.2) and (7.4) we pass to the limit as r, s > » and find that the functions p, q, T, u,
v satisfy the equations (5.6) and the equations

u. du.
§(p_—,,;*+r—,,—; — Fuuy) d2 =0,

§( vy tq 61;* fzv*) 49 — 0.

(7.5)
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Obviously,

lim [Gy(u—uf, v—0f) +6,(u—uf, v—vF)] = lim E,, — E(u,v) >0. (7.6)
T,8—>00 Ty 8->0
From (3.1) and (7.}6) it follows that
®(u, v) > E (u, v), (7.7

where

(g, ) =§[f1q3+f2xp+f3 2 4 (2 + )] e

The functions p, q, T, u, v satisfying Eqs. (5.6), (7.3), (7.5), and the inequality
(7.7) form the generalized solution of the plane mixed problem of the theory of elasticity.

If in (7.3), we set

0v,

_ Quy [ 2 _ Ouy
57 by + dx

(’03_71" (‘04:3‘51
and make use of (7.5), we find that

2D(uy, v,) = E(u, v,) — E(u — u,, v — v,) + E(u, v). (7.8)

Assume that among the functions px, qx, T, ux, vk there are some which satisfy the equations
(7.3) and those equations in (1.3) which are supplementary to the conditions (1.1). Substi-
tuting these functions into (7.3), setting

W = U, 0y = U, wg = Ju/0r, w; = dv/dy, o, = du/dy -+ dv/dx
and making use of (5.6) and (7.7), we find that
20(u, v) = Eu, v) — E(u — u,, v — v,) + BE(uy, v,) > 2E(y, v). (7.9

From (7.8) and (7.9) it follows that

Eu—u,, v—uv,) =0. (7.10)

According to (4.12) and (5.5), Eq. (7.10) has only a zero solution.

Thus, if the plane mixed problem of the theory of elasticity has a sufficiently smooth
solution, then it coincides [in the sense of L,{R)] with the generalized solution, and it
does so uniquely. From the uniqueness of the solution it follows that the entire sequence of

golutions (2.1) converges to it weakly as m, n ~+ .
8. Reduction of the Problem to a Sequence of Boundary-Value Problems for Ordinary Dif-
ferential Equations. We write

n n n—1
. n __ n ’ .
Po= 3 PrPn, =3 giPp, = 3 P,
E=0 E=0 E=0
e N . o2
. — o n
Tn = X TPy un= N uiPy, un= ¥ upP;, (8.1)
B=0 E=0 E=0
. ntl o ” "Sla
Un= D VrPy, va= 3 viPp,
E=0 k=0

where pﬁ, h, T, Un, Vi are functions of x; the Py = Pk(y) are Legendre polynomials; and k is
the degree of the polynomial. :

The approximate solution of the plane mixed problem of the thoery of elasticity will be
sought in the form of functions (8.1) satisfying the boundary conditions
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' (Q1zv;l)y=j;1 = (T";'I.u’:l)yr'—*—_ti = 0; (8.2)
(prum)emst = (PhuR)smzt = (WW0h)ampr =0, k=01,..., n—1, (8.3)
and the equations

1 4 ” 1 ’
apn arn n - arn aqn N—
S(T; Ej—'i‘fi)Phdy:O, 5(7;—1— + 12 1)Phdy:()»
) 2
J (.
§ (s
. ou, v, n ]
5, [‘" ””(7;" o) + A Py =0,

617;l n :
—B—; +15) Prdy =0,

_—ﬁ iz +.f4> Pkdy“o
(8.4)

’

k=01,2,..

A ]

l‘ ’ _(711.; 61);;\ 1
_Tn—.lL *ﬁy—%“w) + fs| Pidy =0

-1
i-=0,1,..., n—1,

where f,* is a segment of the series

n 1
fs = 3 fals, fo = 4 (1 28) S foPudy.
- —1

We assume that in each of the equations (8.2) one of the factors [the same one as in (1.1)]
vanishes all along a side of the square.

If the formulation of the problem contains any of the equations (1.3), then the system
(8.2), (8.4) is supplemented with the corresponding equations

1

_S‘ ugdz =0, 51' vodz =0,
2y

-1

(u? — 3vhz) dz = 0. (8.5)
1

[

Since the functions t,nm, t,0M, qUM, y,PM and the derivatives (7.1), (7.2) have norms
which are uniformly bounded with respect to m, n, it follows that for fixed n the norms of
the derivatives

ay™

apm ggnm oty™ Bul™ ovy™

dy ' 9z ' dy ' 6z’ 9y ' oz

will be bounded uniformly with respect to m. Therefore, from the solutions (2.1) we can form
the subsequences

ns . ns ’, ., ns ” n ” ’

Us’, ug" = Un U° — Uny P —> D3 V05 V5 —> Un; V1° — Upg

~ 8p™  Op, ag"s 0
q"s —> g T —>Tn,’l:z = Tny = >, —67—>—§", (8.6)

ms ” ns ’ ns " ns 7
dvy ot, ot dt, Ouj du,, v, dv,,

oy e o ez oy a0 o5 T on

which converge weakly in L;(R) for fixed n as s + ». The limit functions will satisfy the
equations '
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oy, o,
§ + = 6y — f1 Pro,dQ =0,
Q
Y (3‘!:1’1 6qn n—i P
) Fraa s i rP2dQ2 =0,

6u;1 61;; n\
5. Prp—a5 ‘ﬁTy +f3) PLodQ =0,
2
(8.7)

/ 6v,ln 014;1 n
(g — o5 =B + 2] Prsud =,

oy

P Gu; o, o
Hrn—- ”(5? + 5;“)—~ fs,“] PrpsdQ =0,k =0,1,...,
Q

, 6u v .
g Tn — R ay +f5 Pip,dQ2 =0, i=0,1,...,.n—1,
Q

where ¢, = @{z) (r=1,2, ..., 6) are arbitrary functions and belong to L,{— 1, 1].
We denote by S, the set of continuous and continuously differentiable functions Pur Tx:
Ty Tos u u v ,t,,which satisfy the conditions

(Patts Jompt = (qaV, Jy=t1 = (T )ampr = (00 Jy—ps = 0. (8.8)

We assume that in each of the equations (8.8) one of the factors [the same one as in (1.1)]
vanishes all along a side of the square.

We denote by Si, the set of functions

p**’ q**’ T*¥7T*¥’u¥&’u¥*’vx¥7v¥¥’ (8'9)
which satisfy the equations
, . ,
ou ) ov
P | _ Qe _
5’( U, + Pan ar)dQ ~O,j ( 3y Vs q—g**—a—y—)dQHO,
Q ]

(8.10)

where Py Gy Te, T, U, Ju, U*»U are any functions belonging to Si. We assume that the func-
tions (8.9) have the quadratic summable generalized derivatives which appear in (8.10).

The approximate solution (2.1) belongs to S,. Substituting the functions (2.1) into
(8.10) and passing to the limit as s + =, we find that the limit functions of the subsequences
(8.6) satisfy the equations

ap au,r:_ B aq % . av,’; .
S‘(a:*un+p** az)dQWO, (6; UnTQ**%‘)dQRO,
Q

Q

v ., oy, ar
S( 6’;*Un+r**%)d9:0:j
‘ Q
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(8.11)

where pxx, Qux, ..., Vgx' are any functions belonging to Sxx.

The functions (8.1) satisfying the equations (8.7), (8.11) form the generalized solution
of the boundary-value problem for Egs. (8.2), (8.4) with the boundary conditions (8.3).

Assume that the problem of Egs. (8.2) and (8.4), with the conditions. (8.3), has two gen-
eralized solutions. Let

Doty G Ty Ty Uty Uty U U7 (8.12)
be the differences of these solutions. Since Sx < Six, it follows from (8.11) that the
function (8.12) belongs to Sxx. If in (8.11) we substitute for Pix, Quxs -5 Vix' > Pns
dps---» Vp" the corresponding functions (8.12) and make use of the fact thatthefunctions(S.lZ)
satisfy the equations (8.7) for fbr =0,0=1, 2, ..., 6 we find that

Gl(uf,vw)ﬁ—Gz(u?,vT)::O. (8.13)

Obviously the functions (8.12) satisfy the inequalities obtained when we replace the func-
tions (2.1) in (4.8), (4.10), (4.11), and (5.4) with the functions (8.12). From these in-

equalities and (8.13) it follows that the generalized solution of the problem for Egqs. (8.2)
and (8.4) with the conditions (8.3) 1s unique. From the uniqueness of the solution it fol~
lows that the entire sequence of solutions (2.1) converges to it weakly in L,(Q) for fixed

n as m > .

If the plane mixed problem of the theory of elasticity has a sufficiently smooth solu-
tion, then the entire sequence of generalized solutions of Eqs. (8.2), (8.4) with the condi-
tions (8.3) converges to it weakly in L.(Q) as n » =, The proof is analogous to the proof of
the convergence of the solutions (2.1).

The author is grateful to S. N. Antontsev and A. V. Kazhikhov for their interest, advice,
and comments on this work while it was in progress.
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